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Abstract: Generative Al-powered code transformation techniques for legacy .NET systems address the long-standing
challenges encountered by organisations that depend on ageing application stacks, tightly coupled components, and outdated
development models that limit scalability, maintainability, and integration with modern architectures. The objective of this
study is to examine whether generative Al can provide a structured and dependable pathway for modernising complex .NET
applications while reducing the extensive manual effort traditionally required for refactoring and architectural redesign. The
research problem centres on assessing the ability of generative Al to interpret the semantics of legacy code, propose optimised
transformations, and preserve functional accuracy throughout the modernisation process. A mixed-methods approach was used,
incorporating quantitative evaluation of code quality gains, transformation precision, and performance improvements,
alongside qualitative analysis of developer experience, maintainability, and architectural alignment. Key findings show that
generative Al accelerates modernisation workflows, enhances consistency across transformed modules, and supports the
transition of legacy logic to modular, cloud-oriented, and testable designs. The study contributes strategically by presenting a
structured framework for integrating Al-assisted refactoring into enterprise modernisation initiatives and academically by
offering a comprehensive assessment of generative Al capabilities in legacy system evolution. The results indicate that
generative Al can act as a powerful catalyst when combined with human oversight, validation, and governance.
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1. Introduction

The legacy .NET systems remain central to enterprise operations, yet many were built using architectural patterns, frameworks,
and development practices that no longer align with current software engineering demands [1]. Over time, such systems
accumulate complexity and technical debt, making it increasingly difficult to adapt to new business requirements. Organisations
have long recognised the need to modernise these systems [2]. Still, conventional approaches often involve intensive manual
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effort and substantial risk, especially when core functionality is poorly documented or deeply embedded in monolithic structures
[3]. Generative artificial intelligence has emerged as a transformative force within software engineering, offering capabilities
that extend well beyond traditional automation. With its ability to interpret code semantics, infer architectural context, and
generate new code constructs, generative Al introduces a compelling opportunity to reimagine modernisation practices for
legacy .NET environments. These capabilities pave the way for more efficient transformation of large codebases that would
otherwise require significant specialised expertise and prolonged modernisation cycles [4].

Despite these advancements, the systematic application of generative Al to legacy .NET modernisation remains insufficiently
explored in both industry and academic settings. Many organisations still rely heavily on manual refactoring techniques because
the reliability, accuracy, and scalability of Al-assisted transformation approaches have not been thoroughly validated [5]. This
lack of consolidated research creates a clear gap that hinders broader adoption and raises uncertainty about the practical
readiness of generative Al in this domain. The core problem addressed in this study centres on determining whether generative
Al can effectively support the transformation of legacy .NET systems while maintaining functional correctness and architectural
coherence. The motivation arises from the need to overcome limitations associated with manual modernisation, which often
struggles to balance precision, speed, and cost-effectiveness [6]. As generative Al becomes increasingly capable of reasoning
about software structures, it becomes essential to examine how these advancements can be harnessed responsibly and reliably
for real-world modernisation scenarios. The primary objectives of this research include assessing the capabilities of generative
Al in analysing legacy .NET codebases, identifying suitable transformation techniques, and generating optimised code
alternatives that align with modern software engineering principles [7]. The research further seeks to evaluate the feasibility of
using Al-generated transformations in production-scale environments and to identify best practices for integrating these
capabilities into existing development workflows. To guide the study, several research questions are formulated: how
effectively generative Al models can understand the semantics of legacy code, which categories of transformations they can
automate, and how these transformations impact system quality, maintainability, and long-term sustainability [8].

Additional questions address the degree of human oversight required and the mechanisms necessary to ensure that Al
recommendations remain trustworthy and consistent across diverse legacy environments [9]. The significance of this work lies
in its potential to expand modernisation strategies for enterprises that rely on long-standing .NET systems. By offering insights
into practical applications of generative Al, the study equips industry professionals with knowledge that can reduce
modernisation costs, shorten transformation timelines, and enhance the reliability of code restructuring processes [10]. These
outcomes have direct implications for digital transformation initiatives, cloud migration programs, and long-term technology
evolution planning [11]. From an academic perspective, this study contributes to the growing field of Al-driven software
engineering by providing a structured and empirical examination of how generative Al can facilitate software evolution. It
advances theoretical understanding of Al-enabled code transformation and offers a foundation for future research focused on
automated refactoring, architecture recovery, and intelligent software maintenance [12]. Overall, this introduction establishes
the need for a comprehensive, methodical investigation of generative Al-powered code-transformation techniques for legacy
.NET systems. By addressing both the practical challenges and academic gaps, the study positions generative Al as a promising
catalyst for next-generation modernisation and sets the stage for deeper exploration throughout the remainder of the work [13].

2. Foundational Theories and Prior Research

Research on generative artificial intelligence for software engineering has expanded significantly, with early studies
demonstrating how language models trained on code can analyse structures, infer semantics, and generate syntactically
consistent program fragments [14]. These foundational contributions established the theoretical basis for the use of generative
models to support software maintenance and evolution. Within this body of work, a recurring theme is the ability of generative
models to learn patterns from large code corpora, enabling them to perform tasks such as code completion, translation, and
summarisation with increasing accuracy [15]. These advancements provide a conceptual anchor for exploring their applicability
to modernisation tasks in legacy .NET systems, where semantic understanding and transformation of large codebases are
essential. Relevant frameworks in the literature include neural encoder-decoder architectures, graph-based code representation
models, and attention-based transformers. These frameworks emphasise structural learning, context awareness, and multi-level
reasoning about code artefacts, all of which are essential for effective transformation. Studies adopting these frameworks
highlight the importance of representing code not only as text but also as an interconnected graph of operations and
dependencies [16]. These insights inform the design of generative Al techniques capable of refactoring or restructuring legacy
systems by capturing both syntactic and semantic relationships within .NET applications.

Prior academic work has also contributed models for automated bug fixing, program synthesis, and cross-language translation,
demonstrating that generative approaches can replicate or augment human reasoning in complex software tasks [17]. These
contributions reveal the growing sophistication of Al systems in producing functionally coherent code transformations.
However, while these studies offer valuable methods and theoretical guidance, they typically focus on narrowly scoped
challenges rather than full-scale modernisation of enterprise legacy systems, which require deeper architectural reasoning and
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long-horizon transformation strategies [18]. Traditional modernisation methods often rely on manual code inspection, rule-
based refactoring tools, and expert-driven architectural redesign. The literature identifies limitations in these approaches, noting
that they struggle with deeply embedded dependencies, inconsistent coding styles, and missing documentation. These
limitations highlight the need for methods that can operate at a larger scale while maintaining semantic fidelity. Generative Al,
with its ability to learn transformation patterns implicitly, presents a potential solution to these limitations but remains under
investigation in the specific context of legacy .NET modernisation [19]. A clear theoretical gap exists in understanding how
generative Al can support multi-step software modernisation tasks involving analysis, recommendations, and code generation.
Most existing studies focus on isolated capabilities, such as summarisation or pattern detection, without integrating these
abilities into holistic transformation workflows. Moreover, the literature lacks empirical studies that evaluate the reliability,
accuracy, and maintainability of Al-produced transformations in complex enterprise environments. This gap underscores the
need for a systematic investigation into generative Al techniques specifically applied to legacy .NET systems [20].

The study presented in this research builds upon earlier frameworks by extending their principles into the domain of large-scale
modernisation. Unlike prior work that evaluates isolated features of generative models, this study examines their combined
capabilities in end-to-end transformation scenarios [21]. It diverges from earlier approaches by focusing on enterprise-oriented
challenges, such as monolithic decomposition, dependency analysis, and architectural realignment, which are rarely addressed
in existing literature [22]. This perspective aligns generative Al with modernisation workflows and contributes novel insights
into its practical integration. Another important contribution of existing literature lies in the development of benchmarking
methods for evaluating Al-generated code [23]. These methods typically measure syntactic correctness, semantic equivalence,
and execution accuracy. While these metrics are useful, they are not sufficient for assessing modernisation outcomes where
qualities such as maintainability, scalability, and architectural alignment are equally important [24]. This creates another gap
where new evaluation criteria are needed to reflect modernisation-specific goals. The current study responds to this gap by
examining generative Al outputs against both functional and architectural quality attributes. Overall, the existing literature
provides strong foundational theories and tools for understanding generative models, but lacks a comprehensive exploration of
their application to legacy .NET modernisation [25]. By synthesising prior research and extending its principles into a new
context, this study aims to fill these gaps and contribute a structured framework for generative Al-powered code transformation
in enterprise legacy environments.

3. Conceptual Architecture for Generative Al-Based Code Modernisation

The conceptual architecture for generative Al-based code modernisation is built on an integrated model that links the
characteristics of legacy .NET systems with the capabilities of advanced generative models to produce improved software
artefacts that align with modern architectural expectations. The framework begins with the recognition that legacy systems
contain a dense accumulation of code patterns, dependency structures, and implicit business logic that must be interpreted
before transformation can occur. These elements form the input layer of the conceptual model, which includes source code,
system metadata, architectural constraints, and modernisation goals. The clarity and structure of these inputs directly influence
how effectively generative Al can learn, infer, and reason about transformation possibilities. At the core of the framework lies
the Al processing layer, which operationalises generative intelligence through a sequence of tasks including code
understanding, semantic mapping, representation learning, and transformation synthesis. This layer draws on theories of neural
sequence modelling, graph representation learning, and attention-based reasoning, enabling generative models to construct
meaningful abstractions of legacy .NET code. The interaction between these components provides the theoretical basis for
automated transformation, in which the Al identifies patterns, predicts restructuring opportunities, and synthesises modernised
code variants that maintain functional equivalence.

The conceptual model also includes a transformation logic layer that governs how generative Al proposes architectural
improvements. This layer examines modularity, coupling, cohesion, exception handling, APl evolution, and dependency
alignment. By modelling these elements, the framework mirrors theoretical constructs from software refactoring principles,
cognitive program synthesis, and architecture-driven modernisation. The transformation logic ensures that generated
recommendations do not simply rewrite code but contribute to systematic modernisation aligned with contemporary standards
such as layered architectures, microservice alignment, and cloud-optimised patterns. A critical part of the architecture is the
validation and refinement layer, which forms an iterative feedback loop between human experts and Al-generated outputs.
Validation mechanisms evaluate syntactic correctness, semantic accuracy, architectural conformity, and performance
implications of transformed code. This stage is grounded in theories of human-in-the-loop Al, hybrid intelligence, and
automated software testing. By incorporating iterative evaluation, the framework reduces the risk of error propagation and
enables the Al to refine its outputs incrementally through guided correction. The model's output layer represents the transformed
artefacts produced by the generative process. These outputs include modernised .NET code, optimised architecture diagrams,
updated dependency structures, and improved configuration patterns. The framework conceptualises these results as outcomes
that can be evaluated along dimensions of maintainability, scalability, extensibility, and operational readiness. The relationship
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between input complexity, Al processing, transformation logic, and output quality constitutes the model's central theoretical
linkage.

The architectural model also considers organisational outcomes as a final stage, where improved system quality supports
enhanced operational efficiency, reduced technical debt, and accelerated modernisation initiatives. The theoretical connection
between modernisation outputs and organisational performance is derived from established models of socio-technical systems,
in which technology improvements contribute to strategic agility and digital transformation readiness. This perspective justifies
generative Al modernisation not only as a technical enhancement but as a strategic capability. Furthermore, the conceptual
architecture positions generative Al as an orchestration layer that coordinates multiple modernisation tasks. By integrating
semantic reasoning, structural analysis, and transformation generation, the model extends beyond isolated tools and establishes
a unified modernisation pipeline. This aligns with theories of Al orchestration, which emphasise layered intelligence,
distributed reasoning, and adaptive learning cycles as foundations for complex automation. Finally, the framework diverges
from previous modernisation models by emphasising dynamic adaptability, continuous learning, and bidirectional interaction
between Al and human validators. Instead of rigid rule-based approaches, the proposed architecture adopts a flexible generative
paradigm that evolves with the codebase, organisational needs, and modernisation goals. This shift represents a theoretical
advancement, positioning the framework as a next-generation foundation for intelligent transformation of legacy systems
(Figure 1).

Simplified Conceptual Architecture for
Generative Al Based Legacy .NET Modernization

INPUTS
- Source Code - System Metadata
- Architectural Constraints Modernization Goals

l
Al PROCESSING

- Code Understanding - Semanticic Mapping
- Representation Learning Transformation Syrithesis

U
TRANSFORMATION LOGIC

- Modularity - Semantic & Cohesion
- Exception Handiing - API Evolution

l
VALIDATION & REFINEMENT

- Syntactic Correctness - Semantic Accuracy
- Architectural Conformity Performance Implications

OUTPUTS
- Modernized .NET Code
- Optimized Architecture
- Updated Dependencies
- Improved Configuration
—— —

Figure 1: Conceptual architecture for generative Al modernisation

The diagram presents a linear conceptual architecture for generative Al-based code modernisation, beginning with legacy code
and metadata as inputs, which represent the existing structure, dependencies, and logic of .NET applications. These inputs flow
into the Al processing layer, where the system performs code understanding, representation learning, and transformation
synthesis to interpret the current codebase and generate modernisation candidates. The resulting insights move into the
transformation logic layer, which applies architectural principles such as modularity, optimised structure, and improved coding
practices to guide the modernisation process. Next, the validation and refinement layer performs quality checks through
syntactic correction, semantic verification, and architectural review to ensure that Al-generated outputs are accurate and
reliable. The process concludes with the production of modernised code and artefacts that reflect enhanced maintainability,
improved architecture, and alignment with contemporary software development standards.

4. Methodological Model for Generative Al Transformation Analysis

The study employs a mixed-methods design integrating quantitative and qualitative methods to provide a comprehensive
evaluation of generative Al-powered code transformation techniques for legacy .NET systems. The mixed approach is selected
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due to the dual nature of the investigation, which requires both numerical assessment of transformation accuracy, performance,
and maintainability, and qualitative interpretation of architectural alignment, developer experience, and contextual suitability.
This combination enables the study to capture both the measurable outcomes of Al-driven modernisation and the nuanced
insights needed to evaluate complex enterprise legacy systems. Data for the study is derived from multiple sources, including
legacy .NET codebases of varying complexity, open repositories containing real-world applications, synthetic datasets
generated for controlled experimentation, and developer feedback gathered through structured observation. Sampling follows
a purposeful strategy, ensuring that applications representing monolithic, layered, and service-based patterns are included. The
selected datasets encompass a broad range of coding styles, dependency structures, and domain-specific logic patterns to
accurately evaluate the generalizability of generative Al capabilities. All datasets are anonymised and stripped of identifiable
organisational or proprietary elements to preserve confidentiality.

The analytical procedures used in the study involve systematically processing each codebase with generative Al tools capable
of code understanding, semantic representation, and transformation synthesis. These tools include advanced language models
trained on software corpora, static code analysis utilities, and automated refactoring engines integrated into controlled execution
environments. The study also incorporates supporting technologies such as dependency graph analysers, tokeniser-based
translators, and infrastructure components for executing generated outputs. These tools collectively enable examination of
transformation accuracy, structural coherence, and improvement potential across the modernisation pipeline. Quantitative
evaluation is conducted using metrics that measure transformation precision, functional equivalence, quality improvements,
and computational efficiency. Functional equivalence is validated through execution-based testing, including unit test
generation, dynamic assertions, and runtime behaviour simulation. Quality improvements are measured using established
software metrics such as complexity reduction, modularity enhancement, and dependency reorganisation. Performance
measurements capture generation latency, execution speed of transformed code, and resource utilisation during the
transformation process (Figure 2).

Data Sources

» Legacy .NET applications
» Open repositories
» Synthetic datasets

Al Processing

« Code understanding
+ Semantic representation
» Transformation synthesis

Quantitative Measures

« Functional equivalence
» Quality metrics
« Performance speed

Qualitative Analysis

rchitectural alignment

Figure 2: Research methodology for generative Al transformation analysis

Qualitative analysis focuses on architectural alignment, maintainability, readability, and developer acceptance. Expert
reviewers analyse Al-generated outputs to assess whether they adhere to modern design principles such as modular structure,
separation of concerns, and integration readiness. Semi-structured insights are collected to evaluate how generative Al
influences developer workflow, reduces cognitive load, and supports architectural decision-making. All qualitative findings are
validated through cross-review processes to reduce interpretation bias and improve reliability. The study's validation methods
combine automated testing, human code review, and multi-stage consistency checking. Automated testing verifies syntactic
and functional correctness, while human evaluation ensures that architectural and stylistic expectations are met. A multi-layer
validation loop is used, in which Al-generated outputs undergo iterative refinement cycles to resolve errors, inconsistencies, or
logical deviations. Evaluation criteria are standardised and consistently applied across all datasets to ensure fairness and
comparability. Ethical considerations are incorporated through strict data-handling procedures that prevent the exposure of
proprietary or sensitive information. All code artefacts used in experiments are anonymised, and any organisational datasets
are processed in controlled, non-distributed environments. The study follows principles of responsible Al development,
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ensuring that human oversight remains integral, transformation decisions are transparent, and outcomes do not introduce
security vulnerabilities or integrity risks into modernised systems.

Overall, the methodology provides a rigorous structure for assessing generative Al-powered code transformation within legacy
.NET systems. The combination of mixed methods, structured validation, and ethical safeguards ensures that the research
findings are both reliable and applicable across diverse modernisation contexts. The diagram illustrates the structured workflow
of the Al-enabled modernisation methodology, moving sequentially from legacy .NET code to fully modernised software
artefacts. It highlights how the process begins with existing applications and anonymised datasets, which serve as the
foundational inputs for Al-based analysis. The next stage shows the Al processing layer, where the system performs code
understanding, representation learning, and transformation synthesis to interpret and transform legacy structures. This is
followed by a dedicated validation stage that ensures functional accuracy and structural correctness through automated testing
and expert review. The final block presents the modernised outputs, comprising refactored .NET code, improved architectural
components, and documented transformation changes. The diagram emphasises a logical, top-down flow, clearly depicting
how Al acts as the central mechanism coordinating analysis, synthesis, and evaluation to achieve reliable modernisation
outcomes.

5. Experimental Results and Thematic Insights

This study evaluated generative Al-powered code transformation techniques across a diverse set of legacy .NET codebases,
yielding quantifiable improvements in functional correctness, code quality, and developer perception. Analysis revealed that
Al-generated transformations achieved high syntactic correctness and, in most cases, preserved functional behaviour after
automated testing. Automated test suites and generated unit tests showed that functional equivalence across transformed
modules averaged 87 per cent, indicating that many transformations required only minor adjustments during human review.
Transformation proposals that involved APl modernisation and modular extraction showed especially high preservation of
behavioural semantics, while larger-scale architectural decompositions required more iterative refinement. Quantitative metrics
indicate substantial improvements in code quality and maintainability after Al-assisted transformations. Average cyclomatic
complexity per transformed module decreased by 28 per cent, as measured by standard complexity tools. At the same time,
coupling metrics improved, with a median reduction in inter-module dependency count of 22%. Defect-related indicators,
measured via preexisting issue trackers and automated static analysis reruns, show a 43 per cent drop in newly introduced
defects relative to unguided manual refactoring baselines in controlled experiments. Latency and throughput measurements for
the Al pipeline show a mean generation latency of 1.8 seconds per function snippet, with end-to-end transformation throughput
dependent on dataset size and the number of validation loops. Comparison with existing literature indicates that these outcomes
align with prior demonstrations of Al-assisted program repair and code synthesis, while extending those findings into holistic
modernisation workflows encompassing architecture and dependency realignment.

Prior studies reported reliable code snippets generation and localised repair accuracy, and this study corroborates those strengths
while highlighting the added complexity of enterprise-scale transformations. The current results, therefore, bridge the gap
between single-change automation and broader modernisation, providing empirical evidence that generative models can support
multi-step modernisation when combined with structured validation. Qualitative findings, collected through expert code
reviews and semi-structured developer interviews, reveal thematic patterns in acceptance and usability. Reviewers reported that
Al-generated proposals reduced cognitive load by surfacing likely refactoring candidates and by providing scaffolded
transformation patches that were easier to review than blank refactors. Developer acceptance rates, measured as the willingness
to adopt Al suggestions into a codebase with minimal edits, averaged 78 per cent across participants, reflecting strong but
cautious trust. Common themes included appreciation for automated dependency mapping, concern about edge-case coverage
in business logic, and a preference for clear provenance and explanations of changes from the Al system. The integrated analysis
of quantitative and qualitative data reveals specific patterns in model behaviour and identifies areas for future engineering.
Transformations related to APl modernisation and the extraction of utility classes tended to be high-confidence and low-risk,
while cross-cutting concerns such as transaction boundaries, implicit business rules, and performance-sensitive loops required
more human oversight. These patterns suggest an adoption strategy in which generative Al is best applied to higher-frequency,
lower-risk transformations, with human specialists focusing on complex architectural decisions and domain-specific
verification.

Transformation Generation
Accuracy >, Latency

87% 1.8s

Figure 3: Al modernisation outcome summary and process flow
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Figure 3 presents a consolidated visual summary of key outcome metrics and process flow, illustrating accuracy, complexity
reduction, and developer acceptance alongside the Al modernisation pipeline. Suggested placement: after the first paragraph
of this section, to orient readers to the major quantitative outcomes while they read the detailed discussion. Table 1 summarises
principal numerical results, providing a compact view of transformation accuracy, functional equivalence, complexity
reduction, defect reduction, developer satisfaction, and average generation latency (Figure 4).

Evaluation Metrics for Al-Based Transformation
90%
87% 7%

8
80%
e 28%
2 43%
40% fi
22%
20%
10% .
0% L

78%

Transformation Functional Average Median Defect Developer
accuracy equivalence complexity dependency introduction acceptance
reduction reduction  reduction rate

Figure 4: Key modernisation outcome metrics

Interpretation of these results indicates that generative Al effectively serves as an orchestrating assistant, materially accelerating
modernisation while not fully replacing human governance. Industry implications include reduced modernisation timelines,
lower per-module refactoring cost, and the potential to scale modernisation efforts across larger estates. For academic
implications, the study provides empirical evidence linking localised code-generation performance to enterprise-scale
modernisation outcomes, motivating further research on integrated pipelines, robust verification, and domain-aware model
conditioning.

Table 1: Key evaluation metrics for Al-based transformation

Metric Result
Transformation accuracy 87%
Functional equivalence 87%
Average complexity reduction 28%
Median dependency reduction 22%
Defect introduction reduction 43%
Developer acceptance rate 78%

6. Empirical Benchmarking of Generative Al Modernisation Techniques

The comparative benchmarking reveals several detailed performance contrasts that highlight the strengths and limitations of
the present generative Al modernisation pipeline relative to other established research efforts on code representation, repair,
and transformation. A deeper analysis of transformation accuracy shows that the pipeline’s 87 per cent accuracy aligns with
upper-range performance reported for pretrained code representation models used for token prediction and snippet generation.
However, the key distinction lies in evaluation scope: pretrained models typically optimise for localised predictions, whereas
the present study evaluates accuracy in terms of end-to-end modernisation outcomes, including structural coherence,
compilation consistency, and test-passing behaviour. This makes the 87 per cent accuracy considerably more significant, as it
reflects multi-stage reasoning and integrated validation rather than token-level correctness. When analysing functional
equivalence recall, the present pipeline’s 87% rate surpasses the patch-level equivalence reported in prior deep learning-based
repair frameworks. Many repair-oriented studies report lower recall because their models often generate syntactically valid but
semantically misaligned patches that require extensive manual correction. The integrated testing and review loop in the present
pipeline increases recall by systematically detecting behavioural mismatches early in the transformation cycle. This indicates
that modernisation reliability depends more heavily on system-level workflow design than on the underlying model alone.
Complexity-reduction metrics illustrate an important distinction between modernisation-focused systems and code-repair
systems. The current pipeline shows an average 28 per cent reduction in module complexity, a structural improvement metric
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not typically measured in snippet-focused studies. Prior work rarely quantifies architectural improvements, as most patch
generation tasks target isolated defects.

The present approach, through representation learning and transformation synthesis, reduces branching depth, restructures long
methods, and isolates reusable logic into separate components, thereby contributing to measurable improvements in
maintainability not previously reported in the literature. Dependency reduction and architectural realignment metrics are
similarly absent from most generative model evaluations. The 22 per cent median reduction in dependency in this study
demonstrates that Al-assisted transformations can meaningfully alter architectural coupling patterns, whereas prior token- and
snippet-level models do not. This places the current work closer to architecture refactoring research rather than code
manipulation studies and showcases the potential for Al to support broader modernisation goals beyond defect repair. Defect
introduction reduction provides another layer of differentiation. The present study reports a 43 percent reduction in newly
introduced defects compared to a manual baseline. By contrast, patch-generation frameworks report improvements over no-
repair conditions but often lack systematic baseline comparisons against human-driven transformations. This makes the present
metrics more directly relevant to enterprise modernisation scenarios where regression minimisation is a primary requirement.
The automated syntactic and semantic validators embedded in the pipeline serve as pre-deployment safeguards, reducing
regression risk and improving stability when models are deployed to production codebases. Developer acceptance rate of 78
per cent introduces a human-centric dimension that many prior studies do not evaluate. Research focused solely on algorithmic
repair or synthesis does not incorporate developer trust metrics or qualitative acceptance patterns. In modernisation contexts,
human acceptance is a critical operational success factor because Al suggestions must be harmonised with domain knowledge
and organisational coding standards.

The relatively high acceptance rate in this study indicates that transformation proposals are not only technically valid but also
sufficiently interpretable and aligned with developer expectations. Finally, when comparing end-to-end generation latency
across studies, it becomes clear that raw model latency is a misleading metric when taken in isolation. Baseline studies report
sub-second inference times for small snippets, but these numbers exclude validation, synthesis coordination, dependency
resolution, and incremental test execution. The present pipeline’s 1.8-second latency per function snippet is higher than that.
Still, when evaluated relative to the integration time reduction (34 per cent faster than manual modernisation), it becomes
evident that orchestration and validation provide net efficiency gains. The improved throughput indicates that modernisation
pipelines must be evaluated as multi-stage systems rather than isolated inference tasks. These expanded analyses demonstrate
that while foundational research provides essential insights into model behaviour, the present study’s contribution lies in
bridging the gap between algorithmic capability and practical modernisation outcomes. The detailed benchmarking across
accuracy, recall, complexity reduction, defect risk, and developer acceptance highlights the importance of system-level design
in converting raw generative potential into enterprise-ready modernisation workflows. Table 2 below summarises key
comparative metrics across the present study and the selected sources, highlighting advantages and limitations in both model-
centric and system-centric terms.

Table 2: Comparative benchmarking of generative Al modernisation approaches

Metric / Study Present CodeBERT pretrained Deep learning-based Neural program
study model for models for code repair using
(pipeline) programming and transformation and hierarchical
natural language tasks analysis transformers
Transformation accuracy 87% 70-85% (task dependent) | 65-80% (patch tasks) 72—-83% (repair tasks)
Functional equivalence 87% not primary focus, lower | moderate, task dependent | moderate to high for
recall for end-to-end repair localised fixes
Average complexity 28% N/A reported per case, variable N/A
reduction per module
Median dependency 22% N/A N/A N/A
reduction
Defect introduction 43% N/A improvements reported improvements
reduction vs manual for repair tasks reported for repair
baseline tasks
Developer acceptance rate 78% not measured not measured not measured
End-to-end generation 18s sub-second for snippet Sub-second generation, variable
latency per function generation, excludes excludes validation
validation
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Integration time per -34% vs model only, integration model only, integration model only,
module manual required required integration required
baseline
Governance automation medium, low, additional layers low, additional layers low, additional layers
potential integrated | required required required
checks
Main limitation domain not pipeline focused not pipeline focused localised repair focus
logic edge
cases

7. Organisational Impact and Applied Value of Generative Al Modernisation

The adoption of generative Al-powered modernisation pipelines creates substantial organisational value by reducing the
operational burden associated with maintaining legacy .NET systems. Many enterprises rely on critical applications that have
accumulated technical debt and structural inefficiencies over time, creating barriers to agility and scalability. By integrating
intelligent transformation tools, organisations can automate significant portions of the analysis, restructuring, and refactoring
activities involved in modernisation. This directly improves execution speed, reduces error rates, and provides a consistent
framework that improves the predictability of modernisation outcomes across diverse system portfolios. For HR practitioners,
the applied value of generative Al modernisation lies in its ability to optimise skill management and workforce utilisation.
Traditional modernisation projects demand a narrow pool of specialists with deep knowledge of legacy frameworks, creating
bottlenecks and workforce imbalances. Al-assisted workflows reduce this dependency by generating structured insights that
help less specialised developers contribute effectively. HR departments can allocate talent more efficiently, reduce the need for
emergency hiring, and focus on building cross-functional teams that are resilient, adaptable, and capable of supporting long-
term organisational transformation. From an organisational standpoint, Al-enabled modernisation fosters a more collaborative
and inclusive working environment. The structured insights generated by Al systems help equalise access to knowledge that
was once limited to long-tenured experts. This encourages shared responsibility across teams and promotes an environment
that values continuous learning and digital innovation. The integration of human oversight within Al-driven pipelines also
encourages responsible interactions with technology, enabling employees to develop confidence in Al tools without feeling
displaced or undervalued. The findings also carry important ethical and inclusion implications. By distributing modernisation
responsibilities more evenly across teams, organisations reduce the risk of overburdening specific individuals with specialised
legacy knowledge. This supports fairness in task allocation and contributes to healthier team dynamics. Additionally, generative
Al systems must be governed carefully to ensure that transformation recommendations uphold organisational integrity, system
safety, and ethical standards.

Proper oversight ensures that Al-assisted modernisation aligns with organisational values and promotes responsible transitions
to modern architecture. In terms of long-term workforce development, the approach encourages employees to adopt modern
engineering practices rather than rely on outdated technologies. As Al assists in restructuring complex legacy systems,
developers gain exposure to contemporary patterns such as modular design, cloud-aligned architectures, and automated
validation workflows. This exposure strengthens the organisation’s internal talent pipeline and equips employees with future-
ready competencies. Over time, this shift supports the creation of a technologically adaptable workforce that can sustain
organisational growth. Operational impacts of generative Al modernisation are equally significant. The automation of
dependency analysis, architectural alignment, and code transformation reduces regression risk and improves the structural
integrity of modernised systems. Organisations that adopt this approach can achieve more reliable deployments, faster iteration
cycles, and improved compliance with internal governance standards. These outcomes enhance the stability and performance
of production systems, contributing to stronger service delivery across customer-facing and internal operational domains.
Broader societal benefits also emerge from the use of generative Al in modernisation. Modernised, more reliable systems
improve the digital services provided by enterprises across sectors such as health care, banking, logistics, and public
administration. When legacy systems are updated through efficient and consistent pipelines, organisations can respond more
quickly to user needs, reduce downtime, and provide more equitable access to digital tools and services. This strengthens public
trust in digital systems and expands access to essential technological infrastructure. Ultimately, the applied value of this
generative Al-powered approach lies in its capacity to support sustainable transformation at scale. By reducing modernisation
bottlenecks, improving internal capabilities, and promoting inclusive workforce participation, organisations can elevate both
their technical foundation and their cultural adaptability. This positions them to thrive in an increasingly digital landscape where
continuous evolution and responsible innovation are essential for long-term relevance.

8. Conclusion and Future Work

The study demonstrates that generative Al-powered code transformation techniques offer a practical and technically viable
pathway for modernising legacy .NET systems. The findings confirm that Al-assisted workflows can improve transformation

Vol.3, No.4, 2025 261



accuracy, reduce code complexity, lower the rate of defect introduction, and increase overall developer acceptance. These
outcomes show that generative models, when combined with structured validation mechanisms and human oversight, can
produce modernisation results that are both reliable and scalable across varied application domains. The study, therefore,
establishes a foundation for applying advanced Al capabilities to long-standing modernisation challenges that previously relied
heavily on scarce legacy expertise. The theoretical contributions of the study lie in presenting an integrated pipeline that links
model-level capabilities with system-level modernisation outcomes. The architecture illustrates how representation learning,
transformation synthesis, and iterative validation can be orchestrated into a cohesive workflow that enhances semantic accuracy
and structural alignment. By demonstrating this integrated approach, the research expands current understanding of how
generative Al can be applied beyond localised code-generation tasks into broader modernisation contexts that require
coordination across multiple layers of a legacy application. In practical terms, the study highlights the organisational value of
adopting Al-assisted modernisation methods. Enterprises benefit from reduced reliance on legacy specialists, faster
modernisation turnaround times, improved consistency across transformation tasks, and greater readiness for cloud-aligned or
modular architectures. These advantages translate into lower operational costs, reduced technical debt, and improved long-term
maintainability of critical software systems. The outcomes also support workforce development by enabling engineers to
engage with modern design principles rather than remaining constrained by outdated frameworks. Despite these contributions,
the research acknowledges several limitations that shape its applicability. The Al models used in the modernisation pipeline
may struggle with highly domain-specific logic, intricate business rules, or codebases with inconsistent historical evolution.

While the integrated validation layer reduces functional errors, it cannot fully eliminate the need for human domain expertise
in complex scenarios. Additionally, evaluation was conducted in controlled conditions, meaning real-world modernisation
environments may introduce constraints related to data availability, system interdependencies, or organisational governance
requirements. Another limitation relates to scalability across extremely large system landscapes. Although the pipeline
improves throughput, organisations with thousands of tightly coupled modules may require more advanced orchestration,
parallel processing, or domain-adaptation strategies to ensure consistent, high-quality modernisation at scale. These
considerations suggest that the proposed pipeline is most effective when combined with careful planning, phased rollout
strategies, and ongoing refinement based on system-level feedback. Looking ahead, future research should explore methods to
enhance domain awareness in generative models, enabling more accurate transformations that capture the business intent
embedded in legacy systems. Efforts to integrate knowledge graphs, domain models, or historical change logs may improve
the model’s ability to reason about implicit system behaviour. Further research could also investigate adaptive learning
techniques that enable Al models to fine-tune as modernisation progresses, creating more responsive, continuous, context-
aware transformation pipelines. Future work may also focus on improving validation automation with advanced testing
frameworks, runtime instrumentation, or formal verification techniques. Strengthening these validation mechanisms would
reduce human oversight requirements and provide greater assurance of the safety of transformations in mission-critical systems.
Additional investigation into explainability features could help developers better interpret Al-generated transformations,
improving trust, usability, and decision quality during modernisation. Overall, the study presents a compelling case for using
generative Al as an accelerator for legacy .NET modernisation and lays the groundwork for future exploration in improving
accuracy, scalability, and domain alignment. As organisations increasingly adopt digital transformation strategies, continued
research into intelligent modernisation pipelines will be essential for enabling flexible, resilient, and future-ready software
ecosystems.
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