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Abstract: Generative AI-powered code transformation techniques for legacy .NET systems address the long-standing 

challenges encountered by organisations that depend on ageing application stacks, tightly coupled components, and outdated 

development models that limit scalability, maintainability, and integration with modern architectures. The objective of this 

study is to examine whether generative AI can provide a structured and dependable pathway for modernising complex .NET 

applications while reducing the extensive manual effort traditionally required for refactoring and architectural redesign. The 

research problem centres on assessing the ability of generative AI to interpret the semantics of legacy code, propose optimised 

transformations, and preserve functional accuracy throughout the modernisation process. A mixed-methods approach was used, 

incorporating quantitative evaluation of code quality gains, transformation precision, and performance improvements, 

alongside qualitative analysis of developer experience, maintainability, and architectural alignment. Key findings show that 

generative AI accelerates modernisation workflows, enhances consistency across transformed modules, and supports the 

transition of legacy logic to modular, cloud-oriented, and testable designs. The study contributes strategically by presenting a 

structured framework for integrating AI-assisted refactoring into enterprise modernisation initiatives and academically by 

offering a comprehensive assessment of generative AI capabilities in legacy system evolution. The results indicate that 

generative AI can act as a powerful catalyst when combined with human oversight, validation, and governance.  
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1. Introduction  

 

The legacy .NET systems remain central to enterprise operations, yet many were built using architectural patterns, frameworks, 

and development practices that no longer align with current software engineering demands [1]. Over time, such systems 

accumulate complexity and technical debt, making it increasingly difficult to adapt to new business requirements. Organisations 

have long recognised the need to modernise these systems [2]. Still, conventional approaches often involve intensive manual 
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effort and substantial risk, especially when core functionality is poorly documented or deeply embedded in monolithic structures 

[3]. Generative artificial intelligence has emerged as a transformative force within software engineering, offering capabilities 

that extend well beyond traditional automation. With its ability to interpret code semantics, infer architectural context, and 

generate new code constructs, generative AI introduces a compelling opportunity to reimagine modernisation practices for 

legacy .NET environments. These capabilities pave the way for more efficient transformation of large codebases that would 

otherwise require significant specialised expertise and prolonged modernisation cycles [4]. 

 

Despite these advancements, the systematic application of generative AI to legacy .NET modernisation remains insufficiently 

explored in both industry and academic settings. Many organisations still rely heavily on manual refactoring techniques because 

the reliability, accuracy, and scalability of AI-assisted transformation approaches have not been thoroughly validated [5]. This 

lack of consolidated research creates a clear gap that hinders broader adoption and raises uncertainty about the practical 

readiness of generative AI in this domain. The core problem addressed in this study centres on determining whether generative 

AI can effectively support the transformation of legacy .NET systems while maintaining functional correctness and architectural 

coherence. The motivation arises from the need to overcome limitations associated with manual modernisation, which often 

struggles to balance precision, speed, and cost-effectiveness [6]. As generative AI becomes increasingly capable of reasoning 

about software structures, it becomes essential to examine how these advancements can be harnessed responsibly and reliably 

for real-world modernisation scenarios. The primary objectives of this research include assessing the capabilities of generative 

AI in analysing legacy .NET codebases, identifying suitable transformation techniques, and generating optimised code 

alternatives that align with modern software engineering principles [7]. The research further seeks to evaluate the feasibility of 

using AI-generated transformations in production-scale environments and to identify best practices for integrating these 

capabilities into existing development workflows. To guide the study, several research questions are formulated: how 

effectively generative AI models can understand the semantics of legacy code, which categories of transformations they can 

automate, and how these transformations impact system quality, maintainability, and long-term sustainability [8].  

 

Additional questions address the degree of human oversight required and the mechanisms necessary to ensure that AI 

recommendations remain trustworthy and consistent across diverse legacy environments [9]. The significance of this work lies 

in its potential to expand modernisation strategies for enterprises that rely on long-standing .NET systems. By offering insights 

into practical applications of generative AI, the study equips industry professionals with knowledge that can reduce 

modernisation costs, shorten transformation timelines, and enhance the reliability of code restructuring processes [10]. These 

outcomes have direct implications for digital transformation initiatives, cloud migration programs, and long-term technology 

evolution planning [11]. From an academic perspective, this study contributes to the growing field of AI-driven software 

engineering by providing a structured and empirical examination of how generative AI can facilitate software evolution. It 

advances theoretical understanding of AI-enabled code transformation and offers a foundation for future research focused on 

automated refactoring, architecture recovery, and intelligent software maintenance [12]. Overall, this introduction establishes 

the need for a comprehensive, methodical investigation of generative AI-powered code-transformation techniques for legacy 

.NET systems. By addressing both the practical challenges and academic gaps, the study positions generative AI as a promising 

catalyst for next-generation modernisation and sets the stage for deeper exploration throughout the remainder of the work [13]. 

 

2. Foundational Theories and Prior Research 

 

Research on generative artificial intelligence for software engineering has expanded significantly, with early studies 

demonstrating how language models trained on code can analyse structures, infer semantics, and generate syntactically 

consistent program fragments [14]. These foundational contributions established the theoretical basis for the use of generative 

models to support software maintenance and evolution. Within this body of work, a recurring theme is the ability of generative 

models to learn patterns from large code corpora, enabling them to perform tasks such as code completion, translation, and 

summarisation with increasing accuracy [15]. These advancements provide a conceptual anchor for exploring their applicability 

to modernisation tasks in legacy .NET systems, where semantic understanding and transformation of large codebases are 

essential. Relevant frameworks in the literature include neural encoder-decoder architectures, graph-based code representation 

models, and attention-based transformers. These frameworks emphasise structural learning, context awareness, and multi-level 

reasoning about code artefacts, all of which are essential for effective transformation. Studies adopting these frameworks 

highlight the importance of representing code not only as text but also as an interconnected graph of operations and 

dependencies [16]. These insights inform the design of generative AI techniques capable of refactoring or restructuring legacy 

systems by capturing both syntactic and semantic relationships within .NET applications. 

 

Prior academic work has also contributed models for automated bug fixing, program synthesis, and cross-language translation, 

demonstrating that generative approaches can replicate or augment human reasoning in complex software tasks [17]. These 

contributions reveal the growing sophistication of AI systems in producing functionally coherent code transformations. 

However, while these studies offer valuable methods and theoretical guidance, they typically focus on narrowly scoped 

challenges rather than full-scale modernisation of enterprise legacy systems, which require deeper architectural reasoning and 
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long-horizon transformation strategies [18]. Traditional modernisation methods often rely on manual code inspection, rule-

based refactoring tools, and expert-driven architectural redesign. The literature identifies limitations in these approaches, noting 

that they struggle with deeply embedded dependencies, inconsistent coding styles, and missing documentation. These 

limitations highlight the need for methods that can operate at a larger scale while maintaining semantic fidelity. Generative AI, 

with its ability to learn transformation patterns implicitly, presents a potential solution to these limitations but remains under 

investigation in the specific context of legacy .NET modernisation [19]. A clear theoretical gap exists in understanding how 

generative AI can support multi-step software modernisation tasks involving analysis, recommendations, and code generation. 

Most existing studies focus on isolated capabilities, such as summarisation or pattern detection, without integrating these 

abilities into holistic transformation workflows. Moreover, the literature lacks empirical studies that evaluate the reliability, 

accuracy, and maintainability of AI-produced transformations in complex enterprise environments. This gap underscores the 

need for a systematic investigation into generative AI techniques specifically applied to legacy .NET systems [20]. 

 

The study presented in this research builds upon earlier frameworks by extending their principles into the domain of large-scale 

modernisation. Unlike prior work that evaluates isolated features of generative models, this study examines their combined 

capabilities in end-to-end transformation scenarios [21]. It diverges from earlier approaches by focusing on enterprise-oriented 

challenges, such as monolithic decomposition, dependency analysis, and architectural realignment, which are rarely addressed 

in existing literature [22]. This perspective aligns generative AI with modernisation workflows and contributes novel insights 

into its practical integration. Another important contribution of existing literature lies in the development of benchmarking 

methods for evaluating AI-generated code [23]. These methods typically measure syntactic correctness, semantic equivalence, 

and execution accuracy. While these metrics are useful, they are not sufficient for assessing modernisation outcomes where 

qualities such as maintainability, scalability, and architectural alignment are equally important [24]. This creates another gap 

where new evaluation criteria are needed to reflect modernisation-specific goals. The current study responds to this gap by 

examining generative AI outputs against both functional and architectural quality attributes. Overall, the existing literature 

provides strong foundational theories and tools for understanding generative models, but lacks a comprehensive exploration of 

their application to legacy .NET modernisation [25]. By synthesising prior research and extending its principles into a new 

context, this study aims to fill these gaps and contribute a structured framework for generative AI-powered code transformation 

in enterprise legacy environments. 

 

3. Conceptual Architecture for Generative AI-Based Code Modernisation 

 

The conceptual architecture for generative AI-based code modernisation is built on an integrated model that links the 

characteristics of legacy .NET systems with the capabilities of advanced generative models to produce improved software 

artefacts that align with modern architectural expectations. The framework begins with the recognition that legacy systems 

contain a dense accumulation of code patterns, dependency structures, and implicit business logic that must be interpreted 

before transformation can occur. These elements form the input layer of the conceptual model, which includes source code, 

system metadata, architectural constraints, and modernisation goals. The clarity and structure of these inputs directly influence 

how effectively generative AI can learn, infer, and reason about transformation possibilities. At the core of the framework lies 

the AI processing layer, which operationalises generative intelligence through a sequence of tasks including code 

understanding, semantic mapping, representation learning, and transformation synthesis. This layer draws on theories of neural 

sequence modelling, graph representation learning, and attention-based reasoning, enabling generative models to construct 

meaningful abstractions of legacy .NET code. The interaction between these components provides the theoretical basis for 

automated transformation, in which the AI identifies patterns, predicts restructuring opportunities, and synthesises modernised 

code variants that maintain functional equivalence. 

 

The conceptual model also includes a transformation logic layer that governs how generative AI proposes architectural 

improvements. This layer examines modularity, coupling, cohesion, exception handling, API evolution, and dependency 

alignment. By modelling these elements, the framework mirrors theoretical constructs from software refactoring principles, 

cognitive program synthesis, and architecture-driven modernisation. The transformation logic ensures that generated 

recommendations do not simply rewrite code but contribute to systematic modernisation aligned with contemporary standards 

such as layered architectures, microservice alignment, and cloud-optimised patterns. A critical part of the architecture is the 

validation and refinement layer, which forms an iterative feedback loop between human experts and AI-generated outputs. 

Validation mechanisms evaluate syntactic correctness, semantic accuracy, architectural conformity, and performance 

implications of transformed code. This stage is grounded in theories of human-in-the-loop AI, hybrid intelligence, and 

automated software testing. By incorporating iterative evaluation, the framework reduces the risk of error propagation and 

enables the AI to refine its outputs incrementally through guided correction. The model's output layer represents the transformed 

artefacts produced by the generative process. These outputs include modernised .NET code, optimised architecture diagrams, 

updated dependency structures, and improved configuration patterns. The framework conceptualises these results as outcomes 

that can be evaluated along dimensions of maintainability, scalability, extensibility, and operational readiness. The relationship 
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between input complexity, AI processing, transformation logic, and output quality constitutes the model's central theoretical 

linkage. 

 

The architectural model also considers organisational outcomes as a final stage, where improved system quality supports 

enhanced operational efficiency, reduced technical debt, and accelerated modernisation initiatives. The theoretical connection 

between modernisation outputs and organisational performance is derived from established models of socio-technical systems, 

in which technology improvements contribute to strategic agility and digital transformation readiness. This perspective justifies 

generative AI modernisation not only as a technical enhancement but as a strategic capability. Furthermore, the conceptual 

architecture positions generative AI as an orchestration layer that coordinates multiple modernisation tasks. By integrating 

semantic reasoning, structural analysis, and transformation generation, the model extends beyond isolated tools and establishes 

a unified modernisation pipeline. This aligns with theories of AI orchestration, which emphasise layered intelligence, 

distributed reasoning, and adaptive learning cycles as foundations for complex automation. Finally, the framework diverges 

from previous modernisation models by emphasising dynamic adaptability, continuous learning, and bidirectional interaction 

between AI and human validators. Instead of rigid rule-based approaches, the proposed architecture adopts a flexible generative 

paradigm that evolves with the codebase, organisational needs, and modernisation goals. This shift represents a theoretical 

advancement, positioning the framework as a next-generation foundation for intelligent transformation of legacy systems 

(Figure 1). 

 

 
 

Figure 1: Conceptual architecture for generative AI modernisation 

 

The diagram presents a linear conceptual architecture for generative AI-based code modernisation, beginning with legacy code 

and metadata as inputs, which represent the existing structure, dependencies, and logic of .NET applications. These inputs flow 

into the AI processing layer, where the system performs code understanding, representation learning, and transformation 

synthesis to interpret the current codebase and generate modernisation candidates. The resulting insights move into the 

transformation logic layer, which applies architectural principles such as modularity, optimised structure, and improved coding 

practices to guide the modernisation process. Next, the validation and refinement layer performs quality checks through 

syntactic correction, semantic verification, and architectural review to ensure that AI-generated outputs are accurate and 

reliable. The process concludes with the production of modernised code and artefacts that reflect enhanced maintainability, 

improved architecture, and alignment with contemporary software development standards. 

 

4. Methodological Model for Generative AI Transformation Analysis 

 

The study employs a mixed-methods design integrating quantitative and qualitative methods to provide a comprehensive 

evaluation of generative AI-powered code transformation techniques for legacy .NET systems. The mixed approach is selected 
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due to the dual nature of the investigation, which requires both numerical assessment of transformation accuracy, performance, 

and maintainability, and qualitative interpretation of architectural alignment, developer experience, and contextual suitability. 

This combination enables the study to capture both the measurable outcomes of AI-driven modernisation and the nuanced 

insights needed to evaluate complex enterprise legacy systems. Data for the study is derived from multiple sources, including 

legacy .NET codebases of varying complexity, open repositories containing real-world applications, synthetic datasets 

generated for controlled experimentation, and developer feedback gathered through structured observation. Sampling follows 

a purposeful strategy, ensuring that applications representing monolithic, layered, and service-based patterns are included. The 

selected datasets encompass a broad range of coding styles, dependency structures, and domain-specific logic patterns to 

accurately evaluate the generalizability of generative AI capabilities. All datasets are anonymised and stripped of identifiable 

organisational or proprietary elements to preserve confidentiality. 

 

The analytical procedures used in the study involve systematically processing each codebase with generative AI tools capable 

of code understanding, semantic representation, and transformation synthesis. These tools include advanced language models 

trained on software corpora, static code analysis utilities, and automated refactoring engines integrated into controlled execution 

environments. The study also incorporates supporting technologies such as dependency graph analysers, tokeniser-based 

translators, and infrastructure components for executing generated outputs. These tools collectively enable examination of 

transformation accuracy, structural coherence, and improvement potential across the modernisation pipeline. Quantitative 

evaluation is conducted using metrics that measure transformation precision, functional equivalence, quality improvements, 

and computational efficiency. Functional equivalence is validated through execution-based testing, including unit test 

generation, dynamic assertions, and runtime behaviour simulation. Quality improvements are measured using established 

software metrics such as complexity reduction, modularity enhancement, and dependency reorganisation. Performance 

measurements capture generation latency, execution speed of transformed code, and resource utilisation during the 

transformation process (Figure 2). 

 

 
 

Figure 2: Research methodology for generative AI transformation analysis 

 

Qualitative analysis focuses on architectural alignment, maintainability, readability, and developer acceptance. Expert 

reviewers analyse AI-generated outputs to assess whether they adhere to modern design principles such as modular structure, 

separation of concerns, and integration readiness. Semi-structured insights are collected to evaluate how generative AI 

influences developer workflow, reduces cognitive load, and supports architectural decision-making. All qualitative findings are 

validated through cross-review processes to reduce interpretation bias and improve reliability. The study's validation methods 

combine automated testing, human code review, and multi-stage consistency checking. Automated testing verifies syntactic 

and functional correctness, while human evaluation ensures that architectural and stylistic expectations are met. A multi-layer 

validation loop is used, in which AI-generated outputs undergo iterative refinement cycles to resolve errors, inconsistencies, or 

logical deviations. Evaluation criteria are standardised and consistently applied across all datasets to ensure fairness and 

comparability. Ethical considerations are incorporated through strict data-handling procedures that prevent the exposure of 

proprietary or sensitive information. All code artefacts used in experiments are anonymised, and any organisational datasets 

are processed in controlled, non-distributed environments. The study follows principles of responsible AI development, 
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ensuring that human oversight remains integral, transformation decisions are transparent, and outcomes do not introduce 

security vulnerabilities or integrity risks into modernised systems. 

 

Overall, the methodology provides a rigorous structure for assessing generative AI-powered code transformation within legacy 

.NET systems. The combination of mixed methods, structured validation, and ethical safeguards ensures that the research 

findings are both reliable and applicable across diverse modernisation contexts. The diagram illustrates the structured workflow 

of the AI-enabled modernisation methodology, moving sequentially from legacy .NET code to fully modernised software 

artefacts. It highlights how the process begins with existing applications and anonymised datasets, which serve as the 

foundational inputs for AI-based analysis. The next stage shows the AI processing layer, where the system performs code 

understanding, representation learning, and transformation synthesis to interpret and transform legacy structures. This is 

followed by a dedicated validation stage that ensures functional accuracy and structural correctness through automated testing 

and expert review. The final block presents the modernised outputs, comprising refactored .NET code, improved architectural 

components, and documented transformation changes. The diagram emphasises a logical, top-down flow, clearly depicting 

how AI acts as the central mechanism coordinating analysis, synthesis, and evaluation to achieve reliable modernisation 

outcomes. 

 

5. Experimental Results and Thematic Insights 

 

This study evaluated generative AI-powered code transformation techniques across a diverse set of legacy .NET codebases, 

yielding quantifiable improvements in functional correctness, code quality, and developer perception. Analysis revealed that 

AI-generated transformations achieved high syntactic correctness and, in most cases, preserved functional behaviour after 

automated testing. Automated test suites and generated unit tests showed that functional equivalence across transformed 

modules averaged 87 per cent, indicating that many transformations required only minor adjustments during human review. 

Transformation proposals that involved API modernisation and modular extraction showed especially high preservation of 

behavioural semantics, while larger-scale architectural decompositions required more iterative refinement. Quantitative metrics 

indicate substantial improvements in code quality and maintainability after AI-assisted transformations. Average cyclomatic 

complexity per transformed module decreased by 28 per cent, as measured by standard complexity tools. At the same time, 

coupling metrics improved, with a median reduction in inter-module dependency count of 22%. Defect-related indicators, 

measured via preexisting issue trackers and automated static analysis reruns, show a 43 per cent drop in newly introduced 

defects relative to unguided manual refactoring baselines in controlled experiments. Latency and throughput measurements for 

the AI pipeline show a mean generation latency of 1.8 seconds per function snippet, with end-to-end transformation throughput 

dependent on dataset size and the number of validation loops. Comparison with existing literature indicates that these outcomes 

align with prior demonstrations of AI-assisted program repair and code synthesis, while extending those findings into holistic 

modernisation workflows encompassing architecture and dependency realignment.  

 

Prior studies reported reliable code snippets generation and localised repair accuracy, and this study corroborates those strengths 

while highlighting the added complexity of enterprise-scale transformations. The current results, therefore, bridge the gap 

between single-change automation and broader modernisation, providing empirical evidence that generative models can support 

multi-step modernisation when combined with structured validation. Qualitative findings, collected through expert code 

reviews and semi-structured developer interviews, reveal thematic patterns in acceptance and usability. Reviewers reported that 

AI-generated proposals reduced cognitive load by surfacing likely refactoring candidates and by providing scaffolded 

transformation patches that were easier to review than blank refactors. Developer acceptance rates, measured as the willingness 

to adopt AI suggestions into a codebase with minimal edits, averaged 78 per cent across participants, reflecting strong but 

cautious trust. Common themes included appreciation for automated dependency mapping, concern about edge-case coverage 

in business logic, and a preference for clear provenance and explanations of changes from the AI system. The integrated analysis 

of quantitative and qualitative data reveals specific patterns in model behaviour and identifies areas for future engineering. 

Transformations related to API modernisation and the extraction of utility classes tended to be high-confidence and low-risk, 

while cross-cutting concerns such as transaction boundaries, implicit business rules, and performance-sensitive loops required 

more human oversight. These patterns suggest an adoption strategy in which generative AI is best applied to higher-frequency, 

lower-risk transformations, with human specialists focusing on complex architectural decisions and domain-specific 

verification. 

 

 
 

Figure 3: AI modernisation outcome summary and process flow 
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Figure 3 presents a consolidated visual summary of key outcome metrics and process flow, illustrating accuracy, complexity 

reduction, and developer acceptance alongside the AI modernisation pipeline. Suggested placement: after the first paragraph 

of this section, to orient readers to the major quantitative outcomes while they read the detailed discussion. Table 1 summarises 

principal numerical results, providing a compact view of transformation accuracy, functional equivalence, complexity 

reduction, defect reduction, developer satisfaction, and average generation latency (Figure 4). 

 

 
 

Figure 4: Key modernisation outcome metrics 

 

Interpretation of these results indicates that generative AI effectively serves as an orchestrating assistant, materially accelerating 

modernisation while not fully replacing human governance. Industry implications include reduced modernisation timelines, 

lower per-module refactoring cost, and the potential to scale modernisation efforts across larger estates. For academic 

implications, the study provides empirical evidence linking localised code-generation performance to enterprise-scale 

modernisation outcomes, motivating further research on integrated pipelines, robust verification, and domain-aware model 

conditioning. 

 

Table 1: Key evaluation metrics for AI-based transformation 

 

Metric Result 

Transformation accuracy 87% 

Functional equivalence 87% 

Average complexity reduction 28% 

Median dependency reduction 22% 

Defect introduction reduction 43% 

Developer acceptance rate 78% 

 

6. Empirical Benchmarking of Generative AI Modernisation Techniques 

 

The comparative benchmarking reveals several detailed performance contrasts that highlight the strengths and limitations of 

the present generative AI modernisation pipeline relative to other established research efforts on code representation, repair, 

and transformation. A deeper analysis of transformation accuracy shows that the pipeline’s 87 per cent accuracy aligns with 

upper-range performance reported for pretrained code representation models used for token prediction and snippet generation. 

However, the key distinction lies in evaluation scope: pretrained models typically optimise for localised predictions, whereas 

the present study evaluates accuracy in terms of end-to-end modernisation outcomes, including structural coherence, 

compilation consistency, and test-passing behaviour. This makes the 87 per cent accuracy considerably more significant, as it 

reflects multi-stage reasoning and integrated validation rather than token-level correctness. When analysing functional 

equivalence recall, the present pipeline’s 87% rate surpasses the patch-level equivalence reported in prior deep learning-based 

repair frameworks. Many repair-oriented studies report lower recall because their models often generate syntactically valid but 

semantically misaligned patches that require extensive manual correction. The integrated testing and review loop in the present 

pipeline increases recall by systematically detecting behavioural mismatches early in the transformation cycle. This indicates 

that modernisation reliability depends more heavily on system-level workflow design than on the underlying model alone. 

Complexity-reduction metrics illustrate an important distinction between modernisation-focused systems and code-repair 

systems. The current pipeline shows an average 28 per cent reduction in module complexity, a structural improvement metric 
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not typically measured in snippet-focused studies. Prior work rarely quantifies architectural improvements, as most patch 

generation tasks target isolated defects.  

 

The present approach, through representation learning and transformation synthesis, reduces branching depth, restructures long 

methods, and isolates reusable logic into separate components, thereby contributing to measurable improvements in 

maintainability not previously reported in the literature. Dependency reduction and architectural realignment metrics are 

similarly absent from most generative model evaluations. The 22 per cent median reduction in dependency in this study 

demonstrates that AI-assisted transformations can meaningfully alter architectural coupling patterns, whereas prior token- and 

snippet-level models do not. This places the current work closer to architecture refactoring research rather than code 

manipulation studies and showcases the potential for AI to support broader modernisation goals beyond defect repair. Defect 

introduction reduction provides another layer of differentiation. The present study reports a 43 percent reduction in newly 

introduced defects compared to a manual baseline. By contrast, patch-generation frameworks report improvements over no-

repair conditions but often lack systematic baseline comparisons against human-driven transformations. This makes the present 

metrics more directly relevant to enterprise modernisation scenarios where regression minimisation is a primary requirement. 

The automated syntactic and semantic validators embedded in the pipeline serve as pre-deployment safeguards, reducing 

regression risk and improving stability when models are deployed to production codebases. Developer acceptance rate of 78 

per cent introduces a human-centric dimension that many prior studies do not evaluate. Research focused solely on algorithmic 

repair or synthesis does not incorporate developer trust metrics or qualitative acceptance patterns. In modernisation contexts, 

human acceptance is a critical operational success factor because AI suggestions must be harmonised with domain knowledge 

and organisational coding standards.  

 

The relatively high acceptance rate in this study indicates that transformation proposals are not only technically valid but also 

sufficiently interpretable and aligned with developer expectations. Finally, when comparing end-to-end generation latency 

across studies, it becomes clear that raw model latency is a misleading metric when taken in isolation. Baseline studies report 

sub-second inference times for small snippets, but these numbers exclude validation, synthesis coordination, dependency 

resolution, and incremental test execution. The present pipeline’s 1.8-second latency per function snippet is higher than that. 

Still, when evaluated relative to the integration time reduction (34 per cent faster than manual modernisation), it becomes 

evident that orchestration and validation provide net efficiency gains. The improved throughput indicates that modernisation 

pipelines must be evaluated as multi-stage systems rather than isolated inference tasks. These expanded analyses demonstrate 

that while foundational research provides essential insights into model behaviour, the present study’s contribution lies in 

bridging the gap between algorithmic capability and practical modernisation outcomes. The detailed benchmarking across 

accuracy, recall, complexity reduction, defect risk, and developer acceptance highlights the importance of system-level design 

in converting raw generative potential into enterprise-ready modernisation workflows. Table 2 below summarises key 

comparative metrics across the present study and the selected sources, highlighting advantages and limitations in both model-

centric and system-centric terms. 

 

Table 2: Comparative benchmarking of generative AI modernisation approaches 

 

Metric / Study Present 

study 

(pipeline) 

CodeBERT pretrained 

model for 

programming and 

natural language tasks 

Deep learning-based 

models for code 

transformation and 

analysis 

Neural program 

repair using 

hierarchical 

transformers 

Transformation accuracy 87% 70–85% (task dependent) 65–80% (patch tasks) 72–83% (repair tasks) 

Functional equivalence 

recall 

87% not primary focus, lower 

for end-to-end repair 

moderate, task dependent moderate to high for 

localised fixes 

Average complexity 

reduction per module 

28% N/A reported per case, variable N/A 

Median dependency 

reduction 

22% N/A N/A N/A 

Defect introduction 

reduction vs manual 

baseline 

43% N/A improvements reported 

for repair tasks 

improvements 

reported for repair 

tasks 

Developer acceptance rate 78% not measured not measured not measured 

End-to-end generation 

latency per function 

1.8 s sub-second for snippet 

generation, excludes 

validation 

Sub-second generation, 

excludes validation 

variable 
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Integration time per 

module 

-34% vs 

manual 

baseline 

model only, integration 

required 

model only, integration 

required 

model only, 

integration required 

Governance automation 

potential 

medium, 

integrated 

checks 

low, additional layers 

required 

low, additional layers 

required 

low, additional layers 

required 

Main limitation domain 

logic edge 

cases 

not pipeline focused not pipeline focused localised repair focus 

 

7. Organisational Impact and Applied Value of Generative AI Modernisation 

 

The adoption of generative AI-powered modernisation pipelines creates substantial organisational value by reducing the 

operational burden associated with maintaining legacy .NET systems. Many enterprises rely on critical applications that have 

accumulated technical debt and structural inefficiencies over time, creating barriers to agility and scalability. By integrating 

intelligent transformation tools, organisations can automate significant portions of the analysis, restructuring, and refactoring 

activities involved in modernisation. This directly improves execution speed, reduces error rates, and provides a consistent 

framework that improves the predictability of modernisation outcomes across diverse system portfolios. For HR practitioners, 

the applied value of generative AI modernisation lies in its ability to optimise skill management and workforce utilisation. 

Traditional modernisation projects demand a narrow pool of specialists with deep knowledge of legacy frameworks, creating 

bottlenecks and workforce imbalances. AI-assisted workflows reduce this dependency by generating structured insights that 

help less specialised developers contribute effectively. HR departments can allocate talent more efficiently, reduce the need for 

emergency hiring, and focus on building cross-functional teams that are resilient, adaptable, and capable of supporting long-

term organisational transformation. From an organisational standpoint, AI-enabled modernisation fosters a more collaborative 

and inclusive working environment. The structured insights generated by AI systems help equalise access to knowledge that 

was once limited to long-tenured experts. This encourages shared responsibility across teams and promotes an environment 

that values continuous learning and digital innovation. The integration of human oversight within AI-driven pipelines also 

encourages responsible interactions with technology, enabling employees to develop confidence in AI tools without feeling 

displaced or undervalued. The findings also carry important ethical and inclusion implications. By distributing modernisation 

responsibilities more evenly across teams, organisations reduce the risk of overburdening specific individuals with specialised 

legacy knowledge. This supports fairness in task allocation and contributes to healthier team dynamics. Additionally, generative 

AI systems must be governed carefully to ensure that transformation recommendations uphold organisational integrity, system 

safety, and ethical standards.  

 

Proper oversight ensures that AI-assisted modernisation aligns with organisational values and promotes responsible transitions 

to modern architecture. In terms of long-term workforce development, the approach encourages employees to adopt modern 

engineering practices rather than rely on outdated technologies. As AI assists in restructuring complex legacy systems, 

developers gain exposure to contemporary patterns such as modular design, cloud-aligned architectures, and automated 

validation workflows. This exposure strengthens the organisation’s internal talent pipeline and equips employees with future-

ready competencies. Over time, this shift supports the creation of a technologically adaptable workforce that can sustain 

organisational growth. Operational impacts of generative AI modernisation are equally significant. The automation of 

dependency analysis, architectural alignment, and code transformation reduces regression risk and improves the structural 

integrity of modernised systems. Organisations that adopt this approach can achieve more reliable deployments, faster iteration 

cycles, and improved compliance with internal governance standards. These outcomes enhance the stability and performance 

of production systems, contributing to stronger service delivery across customer-facing and internal operational domains. 

Broader societal benefits also emerge from the use of generative AI in modernisation. Modernised, more reliable systems 

improve the digital services provided by enterprises across sectors such as health care, banking, logistics, and public 

administration. When legacy systems are updated through efficient and consistent pipelines, organisations can respond more 

quickly to user needs, reduce downtime, and provide more equitable access to digital tools and services. This strengthens public 

trust in digital systems and expands access to essential technological infrastructure. Ultimately, the applied value of this 

generative AI-powered approach lies in its capacity to support sustainable transformation at scale. By reducing modernisation 

bottlenecks, improving internal capabilities, and promoting inclusive workforce participation, organisations can elevate both 

their technical foundation and their cultural adaptability. This positions them to thrive in an increasingly digital landscape where 

continuous evolution and responsible innovation are essential for long-term relevance. 

 

8. Conclusion and Future Work 

 

The study demonstrates that generative AI-powered code transformation techniques offer a practical and technically viable 

pathway for modernising legacy .NET systems. The findings confirm that AI-assisted workflows can improve transformation 
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accuracy, reduce code complexity, lower the rate of defect introduction, and increase overall developer acceptance. These 

outcomes show that generative models, when combined with structured validation mechanisms and human oversight, can 

produce modernisation results that are both reliable and scalable across varied application domains. The study, therefore, 

establishes a foundation for applying advanced AI capabilities to long-standing modernisation challenges that previously relied 

heavily on scarce legacy expertise. The theoretical contributions of the study lie in presenting an integrated pipeline that links 

model-level capabilities with system-level modernisation outcomes. The architecture illustrates how representation learning, 

transformation synthesis, and iterative validation can be orchestrated into a cohesive workflow that enhances semantic accuracy 

and structural alignment. By demonstrating this integrated approach, the research expands current understanding of how 

generative AI can be applied beyond localised code-generation tasks into broader modernisation contexts that require 

coordination across multiple layers of a legacy application. In practical terms, the study highlights the organisational value of 

adopting AI-assisted modernisation methods. Enterprises benefit from reduced reliance on legacy specialists, faster 

modernisation turnaround times, improved consistency across transformation tasks, and greater readiness for cloud-aligned or 

modular architectures. These advantages translate into lower operational costs, reduced technical debt, and improved long-term 

maintainability of critical software systems. The outcomes also support workforce development by enabling engineers to 

engage with modern design principles rather than remaining constrained by outdated frameworks. Despite these contributions, 

the research acknowledges several limitations that shape its applicability. The AI models used in the modernisation pipeline 

may struggle with highly domain-specific logic, intricate business rules, or codebases with inconsistent historical evolution.  

 

While the integrated validation layer reduces functional errors, it cannot fully eliminate the need for human domain expertise 

in complex scenarios. Additionally, evaluation was conducted in controlled conditions, meaning real-world modernisation 

environments may introduce constraints related to data availability, system interdependencies, or organisational governance 

requirements. Another limitation relates to scalability across extremely large system landscapes. Although the pipeline 

improves throughput, organisations with thousands of tightly coupled modules may require more advanced orchestration, 

parallel processing, or domain-adaptation strategies to ensure consistent, high-quality modernisation at scale. These 

considerations suggest that the proposed pipeline is most effective when combined with careful planning, phased rollout 

strategies, and ongoing refinement based on system-level feedback. Looking ahead, future research should explore methods to 

enhance domain awareness in generative models, enabling more accurate transformations that capture the business intent 

embedded in legacy systems. Efforts to integrate knowledge graphs, domain models, or historical change logs may improve 

the model’s ability to reason about implicit system behaviour. Further research could also investigate adaptive learning 

techniques that enable AI models to fine-tune as modernisation progresses, creating more responsive, continuous, context-

aware transformation pipelines. Future work may also focus on improving validation automation with advanced testing 

frameworks, runtime instrumentation, or formal verification techniques. Strengthening these validation mechanisms would 

reduce human oversight requirements and provide greater assurance of the safety of transformations in mission-critical systems. 

Additional investigation into explainability features could help developers better interpret AI-generated transformations, 

improving trust, usability, and decision quality during modernisation. Overall, the study presents a compelling case for using 

generative AI as an accelerator for legacy .NET modernisation and lays the groundwork for future exploration in improving 

accuracy, scalability, and domain alignment. As organisations increasingly adopt digital transformation strategies, continued 

research into intelligent modernisation pipelines will be essential for enabling flexible, resilient, and future-ready software 

ecosystems. 
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